$[Cd({}^{3}P_{0})]/[Cd({}^{3}P_{1})] = K = k_{1}/k_{2} = 1.35 \text{ at } 265 \ ^{\circ}C \text{ at equilibrium by Boltzmann}$ statistics. The measured value of k_{3} is $1.95 \times 10^{8} 1 \text{ mol}^{-1} \text{ s}^{-1}$ if the radiative lifetime of $Cd({}^{3}P_{1})$ is 2.0×10^{-6} s and the quenching cross section (σ_{3}^{2}) is $0.015 \ ^{3}A^{2}$ per ethane molecule. The estimated value of k_{3}/k_{4} at 265 $\ ^{\circ}C$ is 4, if $E_{4} = E_{3} + 1.50$ kcal and $A_{4} = A_{3}; \sigma_{4}^{2}$ is about $0.004 \ ^{3}A^{2}$. It has been shown that the auto-acceleration is due to the $Cd({}^{3}P_{1})$ -H₂ reaction, while ethylene inhibits the $Cd({}^{3}H_{1})$ -C₂H₆ reaction. The quenching rate constant of the reaction $Cd({}^{3}P_{1,0}) + H_{2} \rightarrow CdH + H$ was found to be $2.09 \times 10^{11} 1 \text{ mol}^{-1} \text{ s}^{-1}$, which gives 4.60 A^{2} for the quenching cross section.

*Present address: Post Box No. 84, Kingston, Md. 21834, U.S.A.

ON THE REACTIVITY OF SINGLET OXYGEN IN AQUEOUS MICELLAR SYSTEMS

N. BARBOY and I. KRALJIĆ

Laboratoire de Physico-Chimie des Rayonnements (associé au CNRS), Université de Paris-Sud, 91405 Orsay (France)

Singlet oxygen $({}^{1}O_{2})$ in aerated aqueous solutions can be conveniently produced by a process of energy transfer between certain sensitizers (S) in their triplet state (${}^{3}S$) and molecular oxygen (${}^{3}O_{2}$ or simply O_{2}):

$$\mathbf{S} + h\nu \to \mathbf{^{1}S^{*}} \to \mathbf{^{3}S} \tag{1}$$

$${}^{3}\mathrm{S} + \mathrm{O}_{2} \rightarrow \mathrm{S} + {}^{1}\mathrm{O}_{2} \tag{2}$$

Many fluorescent dyes can be used as sensitizers in photooxidation of different substrates (A, acceptor) in which besides the singlet oxygen mechanism, reaction (3), the so-called free radical mechanism may also play an important role, reactions (4) and (5):

$$^{1}O_{2} + A \rightarrow AO_{2} \tag{3}$$

$${}^{3}S + A \rightarrow S^{-} + A^{+}$$
⁽⁴⁾

$$A^{\dagger} + O_2 \rightarrow AO_2^{\dagger} \rightarrow AO_2 \tag{5}$$

The transient formation of ${}^{1}O_{2}$ in aqueous systems is usually checked by some tests based on interception or quenching of ${}^{1}O_{2}$ by a more or less selective reagent. Recently, a general method for identification of the mechanism of dye sensitized photooxidations has been developed [1]. Using this method one can "calculate" the mechanism of any chemical change observed in sensitized photooxidation provided that the corresponding rate constants for ³S and ¹O₂ reactions are known. Since in many sensitized photooxidations the free radical mechanism may take place, the determination of 10_2 rate constants in aqueous solutions can be a rather difficult problem. Accordingly, only a limited number of its rate constants have been determined thus far. Owing to a lack of specific $^{1}O_{2}$ reagents, its reactivity can be studied in systems with no or negligible participation of free radical mechanism. The use of sensitizers showing a rather low reactivity in their triplet state is one possibility, at least for some substrates [2, 3]. Prevention of reactions between a ${}^{1}O_{2}$ producing triplet sensitizer and a substrate by their "separation" would be another possibility. Such a rather "clean" system for the study of singlet oxygen reactions can be constructed in micellar systems since ${}^{1}O_{2}$ can diffuse through thin membranes. Thus, by the choice of a water insoluble sensitizer, which would be dissolved inside the micelle with a substrate outside it, only the ${}^{1}O_{2}$ mechanism would lead to the

photooxidation of A. The influence of an appropriate ${}^{1}O_{2}$ quencher on such a reaction can then serve as a check on the participation of ${}^{1}O_{2}$ and for the determination of its rate constant.

In this work the reactivity of ${}^{1}O_{2}$ in micellar solutions containing Triton X-100 as a surfactant with chlorophyll a (insoluble in water) and hematoporphyrin (sparingly soluble in water) as sensitizers has been examined and compared with results obtained without a micelle building agent. In micellar solutions of chlorophyll a, the photooxidation of the singlet oxygen acceptors imidazole, 2-methylfuran and N-allylthiourea (ATU) has been followed simply by measuring the oxygen consumption during irradiation with visible monochromatic light in a closed system. The dependence of oxygen consumption on substrate concentration in these systems shows a sigmoidal curve as expected for a capture of ${}^{1}O_{2}$ by these substrates, a process which is in competition with the deactivation of ${}^{1}O_{2}$ by the solvent etc.

Rate constants of ${}^{1}O_{2}$ + A reactions in these micellar systems have been determined from competition experiments using N_{3}^{-} ion as an efficient quencher of ${}^{1}O_{2}$ which can suppress the consumption of oxygen:

$${}^{1}O_{2} + N_{2}^{-} \rightarrow O_{2} + N_{3}^{-}$$
(6)

The influence of concentration of N_3^- on oxygen consumption by these substrates gives typical simple competition curves from which rate constants of 1O_2 reactions can be calculated assuming that $k(N_3^- + {}^1O_2) = 2 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ [4]. With hematoporphyrin as sensitizer we have also determined 1O_2 rate constants of reactions with imidazole and 2methylfuran in micellar solutions with Triton X-100 as well as in pure aqueous solutions. The results obtained in these systems are shown in Table 1 in which some published results are included for comparison. These results will be discussed.

TABLE 1

Rate constants $(M^{-1} s^{-1})$ of singlet oxygen reactions with imidazole (Im), N-allylthiourea (ATU) and 2-methylfuran (MF) in micellar and aqueous solutions at pH 7.0

Sensitizer	Concentration of Triton X-100	$k(\mathrm{Im} + {}^{1}\mathrm{O}_{2})$	$k(\text{ATU} + {}^{1}\text{O}_{2})$	$k(MF + {}^{1}O_{2})$
Chlorophyll a	1.0%	2.0×10^7	4.5×10^6	1.0×10^8
	2.0%	$2.9 imes 10^7$		1.1×10^{8}
	5.0%	$3.9 imes 10^7$		$1.0 imes 10^8$
Hematoporphyrin	1.0%	$3.6 imes 10^7$		0.7 × 10 ⁸
	0.0	3.4×10^7		0.6 × 10 ⁸
Phenosafranine	0.0	$4.0 \times 10^{7 a}$	$4.0 \times 10^{6 b}$	

^aRef. 3; ^bref. 2.

Results obtained in this work indicate that well-chosen micellar systems can be used in determination of ${}^{1}O_{2}$ rate constants for different substrates. This may be of interest especially for some "difficult" substrates which react more rapidly or more efficiently with triplet sensitizers than with singlet oxygen.

- 2 I. Kraljić and H. E. A. Kramer, Photochem. Photobiol., 27 (1978) 9 12.
- 3 I. Kraljić and V. A. Sharpatyi, Photochem. Photobiol., in the press.
- 4 N. Hasty, P. B. Merkel, P. Radlick and D. R. Kearns, Tetrahedron Lett., (1972) 49 51.

¹ I. Kraljić, S. El Moshni and M. Arvis, Photochem. Photobiol., 27 (1978) 531 - 537.